Intel® Xeon® D Pushes Military Applications Forward

February 2, 2018 Kenton Williston

While recent trends in high-end rugged computing have emphasized heterogeneous architectures, the Intel® Xeon® D family makes a strong case for general-purpose architectures. As the first Xeon processor qualified for extended temperature ranges, the Xeon D offers more flexibility and higher performance than is typical for embedded products.

Specifically, the Xeon D line supports a temperature range stretching from -40C to 85C. The Xeon D family isn’t the first set of Intel® chips to support this range, but the company’s previous extended-temperature products were derived from its Intel Atom® processor line. Intel Atom CPUs emphasize low power consumption rather than high performance.

As such, the Xeon D processors, offer considerably greater performance than older extended-temperature processors. This means the new processors can take on tasks that previously required a heterogeneous architecture, e.g., a CPU plus an FPGA. By running everything on a Xeon D instead, you get a simpler, more scalable system architecture.

The Xeon D family also offers an impressive degree of flexibility. With a wide range of core counts (4-16), clock speeds (1.3GHz – 2.7GHz Turbo), and TDPs (20-65W), the family can tackle a wide range of requirements.

A white paper from Curtiss-Wright explains how these new capabilities allow the Xeon D family to take on many different application roles and system tasks. The highlighted systems are:

  • A 3U system designed for non-throttling performance up to an 85°C sidewall temperature in a conduction-cooled environment.
  • A two-socket 6U system with support for up to 16 cores per socket and up to 32GB of DRAM per CPU.
  • A 6U system with just one CPU socket but far more memory (up to 128GB).

This variety of configurations illustrates how Xeon D can scale to meet many different needs—including extreme requirements in terms of temperature, compute, and memory capacity.

On that last point, Curtiss-Wright points out that sensor fusion – the process of combining data from multiple sources – is a good example of a memory-hungry application. Multiple high-resolution and/or high-sampling-frequency sensors can generate enormous amounts of data very quickly.

To analyze the data in real time, a system needs both massive compute power and an extraordinarily large RAM. The single-socket, 128GB system illustrates how architectures based on Xeon processors can rise to the challenge – and how taking the CPU-only approach results in a simpler design than an equivalent heterogeneous system.

In short, the high-performance, flexible configuration and broad temperature range of the Xeon D make it an excellent choice for a variety of use cases. The ability to scale out to 32 cores or up to 128GB of RAM is particularly noteworthy, while the ability to scale down to 4 cores means that low-power requirements can be addressed with the same architecture.

About the Author

Kenton Williston

Kenton Williston is the Editor-in-Chief of and served as the editor of its predecessor publication, the Embedded Innovator magazine. Kenton received his B.S. in Electrical Engineering in 2000 and has been writing about embedded computing and IoT ever since.

Follow on Twitter More Content by Kenton Williston
Previous Article
Shrinking Machine Learning Down to IoT Size
Shrinking Machine Learning Down to IoT Size

Machine learning is struggling to gain adoption in embedded applications due to a high level of complexity....

Next Article
How COM Express Simplifies Medical Imaging
How COM Express Simplifies Medical Imaging

Medical devices face steep regulatory requirements and often rely on expensive, fully custom silicon design...


First Name
Last Name
Your Company
Phone Number
Subscribe To Intel Updates
Subscribe To Alliance Partner Updates
By submitting a form on this site, you are confirming you are an adult 18 years or older and you agree to Intel and Intel® IoT Solutions Alliance members contacting you with marketing-related emails or by telephone. You may unsubscribe at any time. Intel's web sites and communications are subject to our Privacy Notice and Terms of Use.
I would like to be contacted by: - optional
Your contact request is submitted.
Error - something went wrong!